

Specialization	HVACR Technology
----------------	------------------

Course Number

Course Title Heating Systems Design

Credit Hours 3

Theoretical Hours 3

Brief Course Description:

Introduction, Insulation, Heating Load Calculations, Fuel used for Heating Systems, Components Of Hot Water System, Hot Water Heating System, Under-floor System, Vapor Heating System, Hot Air Heating System.

Unit Number	Unite name	Unite content	Time Needed
1.	Introduction	 Heat Transfer Methods Heating Methods Central Heating Systems General Components of Heating Systems Thermal Units 	
2.	Insulation	 Thermal Insulation, Definition General Properties, Forms, Thickness of thermal materials Humidity, Definition, Sources, Insulation, Properties, Types, Methods Insulation Position 	
3.	Heating Load Calculations	 Definitions Heating Load System Capacity Design Conditions Heating Load Sources Walls Ceilings Floors Doors Windows Air Change, Air Leakage, Filtration 	
4.	Fuel used for Heating Systems	 Fuel Heating Value Properties of Fuel Solid Fuel Gaseous Fuel Liquid Fuel, Diesel Fuel Tank Volume Calculation and Storage Safety 	
5.	Components Of Hot Water System	 Boiler: Function, Types and Classification, Capacity, Efficiency, Selection Liquid Fuel Burner: Function, Types (Evaporating, Spry, Selection) Pipes: Function, Types, Materials Function: -Expansion and Feeding Tank, Types, Volume 	

جامعة البلغاء التطبيقية

		Circulation Pump: Function, Type, Selection
		Radiators: Function, Types, Selection
		• Water Cylinder: Function, size calculation and
		selection
		Chimney: Function, material, size calculation
		(diameter and height)
		Valves: Types, Selection
6.	Hot Water Heating	Hot Water System: Advantages and
•	System	Disadvantages, Classification
	System	Boiler Capacity calculation
		Flow Rates
		Pipes Size
		Floor Heating System
7.	Under-floor System	Method of Pipes Installations
, ·	onder-moor system	Pipes Loops Configuration
		 Under-floor Heating Design Parameters
		Heat Transfer Calculations
		Water Flow Rate Calculation
		ASHRAE Method
		Pressure Drop calculation and Pump Selection
		Design Procedure
		 Location of the Manifolds
8.	Vapor Heating	Vapor Heating System: Advantages and
0.	System	Disadvantages, Classifications
	System	Pipes
		Pressure drop calculation
		System Components: Steam boiler, Steam
		traps Flow Rates
		Pipes Size
		Radiator
		■ Valves
		PipesGauges and Control Instruments
9.	Hot Air Hosting	Classifications
۶.	Hot Air Heating	
	System	Till Wiction
		Buets Shape
		Function of System Components; Furnaces,
		Ducts, Fan, Filter, Humidifier, Grills

جامعة البلهاء التطبيهية

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	/
Homework and Projects		10%	
Discussions and lecture			
Presentations			

References:

- 1. Johnson ,Refrigeration and Air Conditioning Technology, 4th Edition, ISBN: 0766806677
- 2. Faye C. McQuiston, Jerald D. Parker, Jeffrey D. Spitler Heating, Ventilating and Air Conditioning: Analysis and Design, 6th Edition, ISBN 0-471-47015-5.
- 3. W. P. Jones, Air Conditioning Engineering, 5th Edition, ISBN 0-750-65074-5
- 4. Bill Whitman, Bill Johnson, John Tomczyk, Refrigeration and Air Conditioning Technology, 5th Edition, ISBN 1-401-83765-4.
- 5. Faye C. McQuiston, Jerald D. Parker, Jeffrey D. Spitler Heating, Ventilating and Air Conditioning: Analysis and Design, 6th Edition, John Wiley, ISBN: 0-471-47015-5, 2004.

Specialization	HVACR Technology
----------------	------------------

Course Number

Course Title Refrigeration Systems

Credit Hours 3

Theoretical Hours 3

Brief Course Description:

Introduction and Concepts, Simple Vapor Compression Cycle, Refrigerants, Cooling Load Estimation, Absorption Refrigeration System, Condensers, Evaporators, Compressors, Expansion Valves, Application of Refrigeration.

Unit Number	Unite name	Unite content	Time Needed
1.	Introduction and Concepts	Refrigeration Concepts	
		Closed Refrigeration Circuit	
		Open Refrigeration Circuit	
		Refrigeration Methods, General	
2.	Simple Venev	Review Reversible Carnot Cycle	
2.	Simple Vapor	Vapor Refrigeration Machine	
	Compression Cycle	 Vapor Refrigeration Machine Thermodynamic Calculation of the 	
		cycle	
3.	Refrigerants	Classification and types	
J.	Kenigerants	 Thermodynamic Specification 	
		 Refrigerant Usage 	
		Tromigerant Osago	
4.	Absorption Refrigeration	Introduction	
	System	 Simple Absorption 	
		Practical Vapor Absorption	
		 Advantages Of Vapor Absorption 	
		System Over Vapor Compression	
		Systems	
		 Coefficient Of Performance 	
		■ Domestic Electrolux (Ammonia –	
		Hydrogen, Lithium – Bromide)	
5.	Cooling Load Estimation	 Component Of Cooling Load 	
		 Heating Gain Through Building 	
		Structure	
		 Heating Load Due To Infiltration & 	
		Ventilation	
		Heating Gain Due To Occupants	
		 Heat Gain Due To Machines 	

جامعة البلغاء التطبيقية

		Heat Gain Due To Products
6.	Condensers	 Factor Affecting the Condenser Capacity Classification of Condenser Cooling Towers Thermal Calculation of Condensers
7.	Evaporators	 Factor Affecting the Evaporator Capacity Types of Evaporators Thermal Calculation of Evaporators
8.	Compressors	 Classifications: Reciprocating, Rotary, and centrifugal Compressors Work Done by Reciprocating Compressors Volumetric Efficiency of Reciprocating Compressor Rotary Compressors Centrifugal Compressors
9.	Expansion Valves	 Capillary Tube Automatic Expansion Valve Thermostatic Type
10.	Application of Refrigeration	 Domestic Refrigerator Commercial Refrigerator Ice Marker Water Cooler Refrigeration in Trucks & Containers

جامعة البلقاء التطبيقية

Evaluation Strategies:

Evaluation Strategies.				
Exams		Percentage	Date	
Exams	First Exam	20%	/	
	Second Exam	20%	//	
	Final Exam	50%	//	
Homework and Projects		10%		
Discussions and lecture				
Presentations				

Text Books & References:

1. Silberstein Whitman, Heat Pumps and Refrigeration and Air Conditioning Technology, 3rd Edition, **ISBN:** 0766819590 1401837654

Specialization HVACR Technology

Course Number

Course Title Air Conditioning Lab.

Credit Hours 1

Theoretical Hours 0

Brief Course Description:

Liquid Receiver, Section Accumulator, Oil Separator, Operation of the Compressor, Thermostatic Expansion Device, Automatic Expansion Device, Capillary Tube Performance, Sub Cooling and Super Heating, Evaporation in Parallel, Solenoid Valve Control, Wet Bulb and Dry Bulb Temperature Measurement, Air Condition Processes, Heating, Cooling Humidification.

Detailed Course Description:

Unit	du se Description.	Time
Number	Content	
1.	Liquid Receiver	Needed
2.	Section Accumulator	
3.	Oil Separator	
4.	Operation of the Compressor	
5.	Thermostatic Expansion Device	
6.	Automatic Expansion Device	
7.	Capillary Tube Performance	
8.	Sub Cooling and Super Heating	
9.	Evaporation in Parallel	
10.	Solenoid Valve Control	
11.	Wet Bulb and Dry Bulb Temperature Measurement	
12.	Air Condition Processes (Heating, Cooling Humidification)	

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture Presentations			

References: Sheets lab.

Specialization	HVACR Technology
----------------	------------------

Course Number

Course Title Air Conditioning Systems

Credit Hours 3

Theoretical Hours 3

Brief Course Description:

Introduction, Air Conditioning Processes, Air Conditioning Load Calculations, Central Air Conditioning Methods, Air Ducts and Fans, Filtration, Air Cooler Coils, Air Conditioning Equipments.

Unit Number	Content		Time Needed
1.	Introduction	 Air Conditioning Concepts Composition of Dry Air Dalton's Low of Partial Pressure Fundamental Properties of Wet Air Humidity Ratio Relative Humidity Wet-Bulb Temperature Specific Volume Dew Point Comfort Conditions: Temperatures, Relative Humidity Air Distribution System Filtration 	1 vector
2.	Air Conditioning Processes	 The Psychometric Chart Air Conditioning Processes Sensible Heating and Cooling Dehumidification and Humidification Adiabatic Humidification Mixing Simple Air Conditioning Cycles 	
3.	Air Conditioning Load Calculations	 Definitions Air Conditioning Load System Capacity Cooling Load Calculations: Heat gain by walls, ceilings, floors, doors windows Air Change Persons Miscellaneous Fan and Ducts Load 	

جامعة البلغاء التطبيقية

4.	Central Air	Evaporating Water Method
7.	Conditioning	Compression Cycle
	Methods	Absorption Cycle
	Methous	- Absorption Cycle
5.	Air Ducts and Fans	 Air Duct: Function, specifications, Material Duct Sizing; Velocity method, Pressure Method Thermal and Sound Insulation Fittings Air Diffusing Equipment: Function, Types Grille Outlet Slot Diffuser Outlet Ceiling Diffuser Outlet Perforated Ceiling Panels Selection Fans: Function, Types Noise Position Head Selection
6.	Filtration	 Air Pollution Particles Air Filter Efficiency Types of Filters: Viscous, Dry, Electrical, Centrifugal, Adsorption, Filter Selection
7.	Air Cooler Coils	 Air Cooler Coils Construction Parallel and Contra-Flow Contact Coil Factor Sprayed Cooler Coils Refrigerant Cycle Air Washer Distinction between Cooler Coils and Air Washer Distinction between Cooler Coils and Heating Coils Selection

8.	Air Conditioning Equipments	 Central Air Conditioning Air Method Water- Air Method Water Method Air Handling Units Central Station Individual Room Packaged Water Chillers 	
		 Water Chillers Cooling Tower Humidification and Dehumidification Equipment Heat Pump 	

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			•
Presentations			
			Y

References:

- 1. Johnson, Refrigeration and Air Conditioning Technology, 4th Edition, ISBN: 0766806677
- 2. Faye C. McQuiston, Jerald D. Parker, Jeffrey D. Spitler Heating, Ventilating and Air Conditioning: Analysis and Design, 6th Edition, ISBN 0-471-47015-5
- 3. W. P. Jones, Air Conditioning Engineering, 5th Edition, ISBN 0-750-65074-5
- 4. Bill Whitman, Bill Johnson, John Tomczyk, Refrigeration & Air Conditioning Technology, 5th Edition, ISBN 1-401-83765-4.
- 5. Faye C. McQuiston, Jerald D. Parker, Jeffrey D. Spitler Heating, Ventilating and Air Conditioning: Analysis and Design, 6th Edition, ISBN: 0-471-47015-5, July 2004, Wiley

Specialization HVACR Technology

Course Number

Course Title Heating and Sanitary Piping

Workshop

Credit Hour 1

Theoretical Hours 0

جامعة البلقاء التطبيقية

Brief Course Description:

Safety rules, Tools, machinery used for heating system, Practice in heating equipment, use and care of hand and power tools, piping fabrication of copper, steel, cast iron, and plastic pipe, oil burner, boiler installation and service

Unit Number	Content		Time Needed
1.	Liquid Receiver	 Basic Safety Introduction to Hand Tools Introduction to Power Tools Introduction to Blueprints Cutting and Threading of different metal pipes Cutting and welding of copper pipes and connecting 	
2.		 Assembly of radiators in sections and prepare it for installation Installation of central heating systems consist of six radiators and showing the method of connection Installation of under floor-heating system Pipes thermal insulation 	
3.		Installation f complete central heating system— Perpetration of boiler foundation, Boiler assembly, accessories installation, heat exchanger, Fuel tank and Chimney	
4.	_	 Installation of complete bathroom system with cold and hot water lines Showers, Bedizen, and electrical water heater Construction of manhole 	
5.		 Burner assembly and disassembly Burner operation and fuel and air calibration Temperature and pressure calibration Exhaust gas analysis 	
6.	Plumbing	 Introduction to the Plumbing Plumbing Tools Plastic Pipe and Fittings Introduction to Drain, Waste, and Vent (DWV) Systems 	

جامعة البلقاء التطبيقية

7. Installation of different system components	 Installing and Testing DMV Piping Installing Roof, Floor, and Area Drains Types of Valves Installing and Testing Water Supply Piping Installing Fixtures, Valves, and Faucets Fuel Gas Systems Module Servicing of Fixtures, Valves, and Faucets Installing Water Heaters 	
--	--	--

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Specialization HVACR Technology

Course Number

Course Title Refrigeration and Air

Conditioning Workshops

Credit Hour 1

Theoretical Hours 0

Brief Course Description:

Safety rules, Tools, machinery associated with refrigeration, A/C systems. troubleshooting& repair, services, visits and reports.

الوصف	المحتوى	الوحدة
1-الأدوات و العدد المستعملة في تصنيع و صيانة	العدد و الأدوات المستعملة.	(1
أجهزة التكييف و التبريد و كيفية استعمالها.		
2-الأجهزة الثابتة في مشاغل التبريد و كيفية		
استعمالها.		
3-الحقيبة المتنقلة لفني التبريد.		
إ-التعرف على عدة اللَّحام كاملة و مكوناتها	اللحام و ربط المواسير و تشكيل	(2
2-أنواع الشعلات مع استخدامها.	الصاج.	
3-التدريب على أنواع اللحام.		
4-تمارين على لحام المواسير بأنواعها.		
5-لحام جميع أنواع		
اللحام (الفضية، الحديد، النحاس، الألمنيوم، اللحام		
البارودالخ).		
6-عملية ربط المواسير.		
7-تشكيل الصاج و بسطة و تمارين على ذلك.		
8-الأنفرادات في تشكيل الصاج و تمارين على ذلك.		
1-التعرف على أجزاء التبريد ومعرفة طريقة عملها.	الثلاجات المنزلية و التجارية.	(3
2-أنواع الثلاجات المنزلية و التجارية و غيرها.		
3-الكشف على ثلاجة صالحة للتعرف على أجزائها.		
4-وسائط التبريد المستعملة.		
5-أنواع العوازل المستعملة في ثلاجات التبريد.		
1-تعريف الصيانة، أنواع الصيانة.	الصيانة	(4
2-الجداول النموذجية للتشغيل و الصيانة اليومية.		
3-الطلبات النموذجية، لأمر الشراء، لأمر الصيانة، لأمر		
الإصلاح، لطلب قطع الغيار		
4-جداول نموذجية لصيانة الأنظمة الأتية:		
-نظام التكييف المركزي مع وحدات مناولة الهواء		
باستعمال مبردا لماء chiller.		1
5-وحدات التبريد المجمعة	blue of the second	1///
6-وحدات المضخات الحرارية <heat pump.<="" td=""><td>نة شاور و المحتلاد والدي</td><td>23</td></heat>	نة شاور و المحتلاد والدي	23
7-نظام التبريد و التجميد بغاز الفريون و الامونيا	مالوة التصنطانات	= //
لمستودعات التبريد	1/8	111

جامعة البلغاء التطبيغية

~		
1-التعرف إلى الأعطال الأتية:	صيانة أجهزة التبريد	(5
-أعطال الضواغط(الميكانيكية و الكهربائية).		
-صيانة مكثف أو استبداله		
-أعطال المبخرات بجميع أنواعها		
-أعطال المكثفات بجميع أنواعها		
-أعطال المراوح و مفاتيح التشغيل.		
-أعطال أجهزة التحكم و الحماية و التقويم.		
2-عملية فك الأجهزة و المعدات التالفة و إصلاحها أو		
استبدالها		
-فك ضاغط تالف و استبداله بجديد.		
-صيانة المبخرات و استبداله بأخر إذا كان لا يتم		
اصلاحة.		
-صيانة مكثف أو استبداله		
-صيانة أجهزة التحكم أو استبدالها		
-صيانة صمام تمدد أو استبداله		
-إصلاح أو تبديل المراوح و مفاتيح التشغيل		
-إصلاح أو تبديل قطع ثلاجة نوفر ست و مجاري		
الهواء.		
-عملية الكشف على التنفيس و طرق الكشف و كيفية		
المعالجة.		
انواع زيت التبريد المستعملة للضواغط و طرق		
التبريد و عملية التزويد بالزيت.		
أنواع منقيات الهواء و فلاتر وسيط التبريد في أجهزة		
التكييف و التبريد.		
-عملية تعبئة الغاز		
1-تحدید مستوی الزیت و طریقة التزوید.	صيانة أجهزة التكييف المتوسطة و	(6
2- تحديد مقدار الضغوط العالية و المنخفضة.	الكبيرة.	`
3-تحديد ضغط الزيت المطلوب مع المعايرة.		
4-صيانة فلتر الزيت		
5-صيانة صمامات الضاغطة		
6-تبريد الحافظة للضواغط المفتوحة		
7-صيانة معدات منع انتقال الذبذبات و الاهتزازات من		
الضاغطة إلى القاعدة		
8-صيانة جهاز فصل الزيت عن الغاز و إعادته		
9-التعرف على زجاجات الرؤية و أنواعها.		
10-التعرف على كيفية تجميع الغاز في الخزانات	100	
السائل و الغاز من اجل الصيانة.	9	
11-كيفيه إذابة التَّلج عن المبخرات و صيانتها.	1 Sherry see see	

وها فلج واللحنان لحية

جامعة البلغاء التطبيغية

Evaluation Strategies:

Evaluation Strategies.			
Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Specialization	HVACR Technology
Specialization	

Course Number

Course Title	HVACR Instrumentation and
Course rine	

control

Credit Hours 2

Theoretical Hours 2

جامعة البلقاء التطبيقية

Brief Course Description:

Measurement and Pneumatics control, Temperature measurement and control devices, Electrical control devices, Domestic Air conditioner control circuit, Air conditioning and heating control system, Temperature control system, Heating system control system,

Unit Number	Content		Time Needed
1.	Measurement and Pneumatics control	Testing of Measuring and Pneumatic control devices (Pressure measurements and regulators, Pneumatic relays	
2.	Temperature measurement and control devices	Operation and Testing of Temperature measurement and control devices such as different types of thermostat, Different temperature measurement devices	
3.	Electrical control devices	Operation and testing of Electrical control devices: electronic controller, amplifiers, electrical motors, automatic cutouts, relays, Fuses, magnetic switches	
4.	Domestic Air conditioner control circuit	Control loop elements, Control loop construction Defects diagnostic in the control loop: short circuit, winding cutout, relays contact melting	
5.	Heating system control system	Control loop elements, Control loop construction Defects diagnostic in the control loop	
6.	Temperature control system	Control loop elements, Control loop construction, Open and closed loop control systems, Defects diagnostic in the control loop	<u> </u>
7.	Air conditioning and heating control system	Control loop elements, Switching between heating and Air conditioning, Manual control, Different types of automatic control systems.	

جامعة البلقاء التطبيقية

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	/
	Final Exam	50%	/
Homework and Projects		10%	
Discussions and lecture			
Presentations			

References:

- 1. John I. Levenhagen, HVAC Control System Design Diagrams, ISBN 0-070-38129-1.
- 2. Christopher Underwood, C. P. Underwood, HVAC Control Systems: Modelling, Analysis, and Design, ISBN 0-419-20980-8.
- 3. John I. Levenhagen, Donald H. and Spethmann, HVAC Controls and Systems, 1st Edition, McGraw-Hill 1993, ISBN 0070375097.
- 4. S. Don Swenson, HVAC Controls and Control Systems, Prentice Hall, 1994, ISBN-10-0130453609

Specialization HVACR Technology

Course Number

Course Title HVACR Instrumentation and control Lab

Credit Hours 1

Theoretical Hours 0

جامعة البلغاء التطبيغية

Brief Course Description:

Measuring and control elements, Temperature, pressure, flow rate and humidity measurement and control, Control system of cooling, heating and A/C processes, Adjustment. Monitoring & troubleshooting

Detailed Course Description:

Unit Number	Content	Time Needed
1.	Pressure measurements	
2.	Pressure regulators	
3.	Temperature measurements	
4.	Thermostat	
5.	flow rate measurement and control	
6.	humidity measurement and control	
7.	Electrical controlling elements (Relay, overload, contractor)	
8.	Expansion Device	
9.	Temperature and pressure controllers	
10.	Three way controllers	
11.	Air ventilation and air conditioning control system	
12.	Solenoid Valve Controller	9

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

References: Sheets lab.

Specialization	HVACR Technology
----------------	------------------

Course Number

Course Title	Thermal Engineering

Credit Hours 3

Theoretical Hours 3

جامعة البلغاء التطبيقية

Brief Course Description:

Concepts and definitions, Properties of a pure substance, Work and heat, the first law of thermodynamics, the second law of thermodynamics, Principles of heat transfer Steady state conduction, Radiation, Heat exchangers

Unit subject 1 Concepts and definitions: System, control volume, properties, state substance, processes, cycles, specific volume, pressure, temper scales, zeroth law of thermodynamics, units 2 Properties of a pure substance: vapor-liquid-solid phase equilibric pure substance, equation of state, tables of thermodynamic proping Work and heat: definition and unites of work, work done at the meaning substance.	ature um in a erties. oving
substance, processes, cycles, specific volume, pressure, temper scales, zeroth law of thermodynamics, units Properties of a pure substance: vapor-liquid-solid phase equilibric pure substance, equation of state, tables of thermodynamic prop	ature um in a erties. oving
scales, zeroth law of thermodynamics, units Properties of a pure substance: vapor-liquid-solid phase equilibric pure substance, equation of state, tables of thermodynamic prop	um in a erties. oving
2 Properties of a pure substance: vapor-liquid-solid phase equilibric pure substance, equation of state, tables of thermodynamic prop	erties. oving
pure substance, equation of state, tables of thermodynamic prop	erties. oving
	oving
boundary of a simple compressible system, definition and unites	
relation between work and heat.	
4 The first law of thermodynamics: The first law for the change in s	tate of a
system ,internal energy, enthalpy, constant volume and pressure	
heats, internal energy and enthalpy and constant volume and pre	essure
specific heats for ideal gases, the first law of thermodynamics for	a control
volume, the steady state, steady flow process.	
5 The second law of thermodynamics: the engines and refrigerator	S,
reversible process, cornot cycle, entropy ,entropy change of an id	deal gas,
ploytropic and adiabatic reversible process.	-
6 Principles of heat transfer: conduction heat transfer, plane wall, p	lane wall
in series and parallel, electro analog for conduction, contact resis	stance,
thermal conductivity, convection heat transfer, radiation heat tran	ısfer,
combined heat transfer mechanisms.	
7 Steady state conduction: steady one –dimensional conduction ed	quation
without generation in rectangular coordinates, cylindrical coordinates	
steady one –dimensional conduction equation with generation, fire	ns, types
of fins, fin efficiency, transient conduction with negligible internal	
resistance.	
8 Radiation: physics of radiation, black body, planks law, stefan-Bo	oltzman
law, radiation properties, kirchoff's law, gray body, shape factor, i	
exchange between black surfaces.	
9 Heat exchangers: types, overall heat transfer coefficient, the log-	mean
temperature difference, heat exchanger effectiveness.	leaine!

جامعة البلقاء التطبيقية

Evaluation Strategies:

z + wrantion structed			
Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Text Books:

- Fundamentals of Thermodynamics, 6th Edition Richard E. Sonntag, Claus Borgnakke and Gordon J. Van Wylen John Wiley and Sons Inc., New York, NY, 2003
- Basic heat transfer, Frank kreith and william Z.Black, Harper&row.

□ References:

- 1. Y.A. Cengel, Introduction to Thermodynamics and Heat Transfer, Irwin/McGraw-Hill, 1997.
- 2. Fundamentals of Engineering Thermodynamics, M. J. Moran, H. N. Shapiro 5th Ed, John Wiley & Sons, Inc., 2004, ISBN: 0-471-27471-2.
- 3. J.B. Jones and G.A. Hawkins, Engineering Thermodynamics, Second Edition, John Wiley & Sons, 1986

4.

اساسيات الديناميكا الحرارية الكلاسيكية ،وايلي وسونتاج،ترجمة مركز الكتب الاردني ،الطبعة الثانية.

R Technology

Course Number

Course Title Thermal Engineering Lab

Credit Hours 1

Theoretical Hours 0

جامعة البلقاء التطبيقية

Brief Course Description:

❖ Pressure – Temperature relation in the saturation region; Compressor cycles and analyses; Heat pump performance; Conduction heat transfer; Radiation heat transfer; and Heat exchanger performance

Detailed Course Description:

Unit Number	Content	Time Needed
1.	Saturation Pressure- Saturation Temperature relation (Marcel Boiler)	
2.	Heat losses in Heat pump condenser	
3.	Energy balance of Heat pump	
4.	Coefficient of performance of heat pump	
5.	Air compressor polytropic work	
6.	Isothermal efficiency of reciprocating air compressor	
7.	Volumetric efficiency of reciprocating air compressor	
8.	longitudinal Condition in simple bar	
9.	radial Condition in simple bar	
10.	Conduction in composite bar	
11.	Effect of insulation on conduction heat transfer	
12.	Forced convection heat transfer	
13.	performance of parallel and counter flow heat exchangers	
14.	performance of cross flow heat exchangers	

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations		110	

Text Books & References:

Sheets lab.

Specialization	HVACR Technology
----------------	------------------

Course Number

\sim	7EP • 4 E	3.4	
Course	IIIIA	VIAC	hanics
Course	11111	17100	пашс

Credit	Hours		3
Cicui	LITUULS	•	,

Theoretical Hours 3

جامعة البلقاء التطبيقية

Brief Course Description:

General principles, Force vector, Equilibrium of a particle, Force system resultant Equilibrium of rigid body, Analysis of structures, Internal forces, Dry friction, Centroid and Moment of Inertia, Kinematics of a particle, Kinetics of a particle (Forces and acceleration), Kinetics of a particle (impulse and momentum).

Unit	subject
1	General principles: Mechanics, Fundamental concept, Units, SI System.
2	Force vector: Scalars and Vectors, Vector operations, Vector addition of forces, Cartesian vectors, position vector, Force vector directed along a line, Dot product.
3	Equilibrium of a particle: Equilibrium condition, Free body diagram, Coplanar force system.
4	Force system resultant: Cross product, Moment of a force, Principle of moment, Moment of a force about a specified axis, Couple, Reduction of a simple distributed load.
5	Equilibrium of rigid body: Conditions of rigid body Equilibrium, Equilibrium in two dimensions.
6	Analysis of structures: Simple trusses, The method of joints, Zero force members, The method of section, frame.
7	Internal forces: Internal forces in structural members.
8	Dry friction: Characteristics of dry friction, Rules of dry friction, Angle of friction, Problems involving dry friction.
9	Centroid and Moment of Inertia: Centroid and Moment of Inertia for particle and body, composite bodies, parallel – axis theorem for an area, Moment of Inertia for mass.
10	Kinematics of a particle: continuous motion, graphical solution, general curvilinear motion(rectangular components), motion of a projectile
11	Kinetics of a particle (Forces and acceleration): equation of motion, equation of motion for a system of particles (rectangular components).
12	Kinetics of a particle (impulse and momentum): principle of linear impulse and momentum, principle of linear impulse and momentum for a system of particles, impact.

جامعة البلقاء التطبيقية

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture Presentations			

Text Book:

• Engineering Mechanics- Statics & Dynamics, By Hibbeler, 10th edition.

References:

• Vector Mechanics for Engineering - Statics & Dynamics, By Beer and Johnston, 6th edition, McGraw Hall.

Specialization	HVACR Technology
-----------------------	-------------------------

Course Number

COULSC FILE BUILD BUILDING SIN	Course Title	Energy	Conversio
--------------------------------	--------------	--------	-----------

Credit Hours 2

Theoretical Hours 2

جامعة البلقاء التطبيقية

Brief Course Description:

Introduction and Basic concept, Energy types, solar energy, Power cycles, Energy Storage, Energy Conservation.

Unit Number	Content		Time Needed
1.	Introduction and Basic concept	Historical review, Types and classification of energy sources, Traditional energy sources.	
2.	Energy types	Wind energy: Using wind as a resource, Site selection for small wind machines, Large wind electrical systems, Environmental and economic considerations. Regional advantages for wind power, water energy, and the applications. Geothermal Energy: Types and uses of geothermal energy, Geothermal resources development, environmental considerations, regional potential of this resource in Jordan and Arab countries	
3.	Solar energy	Solar collection, Solar heating systems, properties of solar storage systems, Solar cooling systems, Solar photovoltaic systems.	
4.	Power cycles	Carnot cycle, Otto cycle, diesel cycle turbine cycle, power plant cycle.	
5.	Energy Storage	Concept of energy storage, mechanical and electrical energy storage, Chemical energy storage, Thermal energy storage.	
6.	Energy Conservation	Objectives of energy conservation, Energy conservation in the residential/commercial sector, Energy conservation in the industrial sector, Energy conservation in the transportation sector, Active and passive techniques of energy conservation	

جامعة البلقاء التطبيقية

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

References:

- 1. Solar engineering of thermal process,2cd edition, duffie&Beckman, john wiley &sons.inc.1991.
- 2. Peter Gevorkian, Sustainable Energy Systems Engineering: The Complete Green Building Design Resource, 1st Edition
- 3. Moncef Krarti, Energy Audit of Building Systems: An Engineering Approach, ISBN 0-849-39587-9

